Online Scaling and Preproessing
API Reference
ondil.scaler.OnlineScaler
Bases: OndilEstimatorMixin, TransformerMixin, BaseEstimator
__init__
The online scaler allows for incremental updating and scaling of matrices.
Parameters:
-
forget(float, default:0.0) –The forget factor. Older observations will be exponentially discounted. Defaults to 0.0.
-
to_scale(bool | ndarray, default:True) –The variables to scale.
Trueimplies all variables will be scaled.Falseimplies no variables will be scaled. Annp.ndarrayof typeboolorintimplies that the columnsX[:, to_scale]will be scaled, all other columns will not be scaled. Defaults to True.
fit
Fit the OnlineScaler() Object for the first time.
Parameters:
-
X(ndarray) –Matrix of covariates X.
-
y(None, default:None) –Not used, present for compatibility with sklearn API. Defaults to None.
-
sample_weight(ndarray, default:None) –Weights for each sample. Defaults to None (uniform weights).
update
Update the OnlineScaler() for new rows of X.
Parameters:
-
X(ndarray) –New data for X.
-
y(None, default:None) –Not used, present for compatibility with sklearn API. Defaults to None.
-
sample_weight(ndarray, default:None) –Weights for each sample. Defaults to None (uniform weights).
transform
Transform X to a mean-std scaled matrix.
Parameters:
-
X(ndarray) –X matrix for covariates.
Returns:
-
ndarray–np.ndarray: Scaled X matrix.