Skip to content

Model Selection

ROLCH employs online model selection based on information criteria (IC). We calculate the IC based on the Residual Sum of Squares (RSS), which can be tracked online.

API Reference

rolch.information_criterion

information_criterion(n_observations: Union[int, np.ndarray], n_parameters: Union[int, np.ndarray], rss: Union[float, np.ndarray], criterion: Literal['aic', 'bic', 'hqc'] = 'aic') -> Union[float, np.ndarray]

Calcuate the information criteria.

The information criteria are calculated from the Resdiual Sum of Squares \(RSS\). The function provides the calculation of Akaikes IC, the bayesian IC and the Harman-Quinn IC.

Parameters:

Name Type Description Default
n_observations Union[int, ndarray]

Number of observations

required
n_parameters Union[int, ndarray]

Number of parameters

required
rss Union[float, ndarray]

Residual sum of squares

required
criterion Literal['aic', 'bic', 'hqc']

Information criteria to calculate. Defaults to "aic".

'aic'

Raises:

Type Description
ValueError

Raises if the criterion is not one of aic, bic or hqc.

Returns:

Type Description
Union[float, ndarray]

Union[float, np.ndarray]: The value of the IC for given inputs.

rolch.select_best_model_by_information_criterion

select_best_model_by_information_criterion(n_observations: float, n_parameters: np.ndarray, rss: np.ndarray, criterion: Literal['aic', 'bic', 'hqc', 'max']) -> int

Calculates the information criterion and returns the model with the best (lowest) IC.

Note

The information criterion max will always return the largest model.

Parameters:

Name Type Description Default
n_observations float

Number of observations

required
n_parameters ndarray

Number of parameters per model

required
rss ndarray

Residual sum of squares per model

required
criterion Literal['aic', 'bic', 'hqc', 'max']

Information criterion.

required

Raises:

Type Description
ValueError

Raises if the criterion is not one of aic, bic, hqc or max.

Returns:

Name Type Description
int int

Index of the model with the best (lowest) IC.